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• Traditional tests of speech-in-noise perception use artificial

background noise, leading to results that do not generalize to

real-world scenarios. Speech perception is poorer in real-

world noise than artificial noise, but why this is the case is

unclear (e.g., Best et al., 2015).

• There is a significant need for improved ecological validity in

laboratory and clinic speech-in-noise tests, particularly with

respect to the types of noise used. However, the acoustic

complexity and random nature of real-world noise poses

challenges to its use and the interpretation of results.

• The purpose of this study was to quantify complexity in

real-world noise and measure its effects on speech

perception in listeners with normal hearing.

• For this study, complexity in real-world noise was quantified

using entropy. Entropy is a standard measure of complexity

(Shannon, 1948), and has known effects on pure tone

discrimination (Lutfi, 1993) and subjective perceptions of

speech perception in real-world environments (Ghozi et al.,

2015). The objective effects of entropy in real-world noise on

speech perception have not been systematically evaluated.

• Entropy quantifies the complexity, or amount of information in

a signal, as a function of the statistical structure of the signal.

The standard formula (Shannon, 1948) for entropy is:

where p(xi) is the probability of the ith event in signal x.

• We hypothesized that higher entropy variance in the time

and frequency domains (i.e., more stimulus windows with

low entropy) would yield systematically better speech

perception, with smaller effects for participants with

hearing loss particularly in the unaided condition.

• Real-world noise stimuli came from the Ambisonics

Recordings of Typical Environments Database (Weisser et al.,

2019). Eight environments were used: Café 1, Café 2, Church

2, Dinner Party, Food Court 1, Food Court 2, Street Balcony,

and Train Station. Target speech sentences were IEEE

sentences.

• Original ARTE recordings were decoded to 8-channels, played

through an 8-speaker array, and recorded from a KEMAR.

Entropy in the time (energy entropy) and frequency (spectral

entropy) domains was then systematically analyzed from the

binaural recordings.

• Energy entropy was analyzed using a similar method as in

Pikrakis et al. (2008) and Giannakopoulos & Pikrakis (2014),

and spectral entropy was calculated using the same method

as in Misra et al. (2004). For both energy and spectral entropy,

calculations were made using Hamming windows with a length

of 0.03s and a step size of 0.01s.

• The short-time entropy in the time and frequency domains was

calculated across all potential stimuli segments extracted from

the ARTE Database. Standard deviations of entropy were

used as a mid-term statistic (e.g., Ghozi et al., 2015; Pikrakis

et al., 2008) to quantify the entropy across 3.44s segments,

the longest length of a potential target sentence. Examples of

the energy (top) and spectral (bottom) entropy sequences for

a noise segment (Café 1 at the 125th second), with white noise

and a pure tone given for reference, are shown in Figure 1.

• Twenty-five noise segments representing the distribution of

energy and spectral entropy variance within environment were

identified as the noise stimuli of interest (Figure 2).

• Speech perception in each noise segment was tested in a

trial-by-trial design with 400 total trials across two blocks.

Participants with hearing loss completed the experiment in

unaided and aided conditions. The hearing aid used was the

Portable Hearing Aid Lab, running openMHA software, and set

to NAL-NL2 targets at 55, 65, and 75 dB input levels.

RESULTS

• For each participant, target IEEE sentences were drawn

randomly, matched with a noise segment in random order,

convolved with the room impulse response for that noise

segment, and then combined with the noise at -6 dB signal-to-

noise ratio. Noise was presented at its real-world level. Noise

began 2s before the sentence. Scores for each trial were

number of keywords repeated back correctly.

• Participants were 21 adults with normal hearing (mean

age=27 years) and 25 adults with mild-to-moderate

sensorineural hearing loss (mean age = 63 years).

Participants with hearing loss were all experienced hearing aid

users. All were native English speakers.

Figure 1. Examples of entropy sequences in the time domain (top) and frequency

domain (bottom) for white noise, a 1000 Hz pure tone, and a stimuli noise segment.

Figure 2. Entropy variance in the time domain (top) and frequency domain (bottom) for

all noise stimuli.

• Results showing number of keywords correct

as a function of entropy variance in the time

(top) and frequency (bottom) domains are

shown in Figure 3.

• Linear mixed effects models with random

intercepts for participants were used to

analyze results.

• Number of words correct improved

systematically with increases in entropy

variance in the time and frequency

domains for all listeners.

• The effect was smaller for listeners with

hearing loss, particularly in the unaided

condition.

• For the time domain experiment, on average,

participants with hearing loss had poorer

scores in the aided condition than the

unaided condition (β=-0.7; t(136.68)=-2.1,

p=.038). There was a significant interaction

between aided condition and energy entropy

and aided condition, with a larger effect of

entropy in the aided than unaided condition

(β=5.31; t(10147)=1.92, p=.05).

• For the frequency domain experiment,

scores were not, on average, significantly

different between the aided and unaided

conditions. However, there was a significant

interaction such that the effect of spectral

entropy was larger in the aided than unaided

condition (β=2.97; t(10147)=2.69, p=.007).

Figure 3. Effect of energy and spectral entropy variance on number of keywords correct across all environments. Horizontal bars represent

median values. Vertical bars represent values within the first and third quartiles ± the interquartile range × 1.5. Dots represent outliers.

• Results were consistent with our hypotheses. Increasing noise complexity, 

quantified with entropy in the time or frequency domains, resulted in 

systematically poorer speech perception scores. Effects were smaller for 

listeners with hearing loss than for listeners with normal hearing, and smaller 

in the unaided than aided condition.

• Investigations of speech perception in real-world noise, either in virtual sound 

environments or real-world environments, should consider the effects of entropy in 

the design of experiments and interpretation of results.

• This experiment was not reductionist; it is not possible to precisely identify the 

mechanisms by which entropy affects speech perception in real-world noise. Based 

on prior work, possibilities include reductions in informational masking with 

decreasing entropy (e.g., Lutfi 1993), temporal masking release with increases in 

energy entropy variance (e.g., Miller, 1947), or larger divergences between 

probability structures of target and masker with increasing entropy variance (Lufti et 

al., 2013). Listeners with hearing loss typically show less benefit from masking 

release mechanisms than listeners with normal hearing (e.g, Best et al., 2011), 

which is consistent with data presented here. Central processing and executive 

function mechanisms may also contribute. 

• Entropy variance in real-world noise may account for differences observed between 

speech perception in laboratory noise and real-world noise, as well as differences in 

benefit observed from hearing aids in the lab and the real-world (Best et al., 2015; 

Wu et al., 2019). 

• An important area of future work is a characterization of how amplification,

compression, and other signal processing features, particularly adaptive features,

interact with entropy in real-world noise to affect speech perception and hearing aid

benefit for listeners with hearing loss.
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