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I Objective

Can we make the user experience of fitting hearing aids (HAs) com-
parable to that of getting a pair of reading glasses at the neighbour-
hood pharmacy? We are developing hardware and software instruments in the
Open-source Speech Platform (OSP), wherein the machine proposes HA parame-
ters and the user provides feedback on the quality in an iterative loop [1]. This
contribution describes use of OSP in research aimed at improving hearing aid fitting
protocols.

Fig 1: A user wearing the OSP wearable platform. The two hardware components
shown are the behind-the-ear receiver-in-canal (BTE-RIC) transducers and
the Processing and Communication Device (PCD).

II Approach

We consider two classes of HA parameters in the proposed research:

1. Those HA parameters for which the clinical community has developed collective
insights on prescription protocols and their efficacy. Examples include:

• Compression gains based on NAL-NL2 [2], DSL [3], etc.

• Goldilocks search and select approach for Loudness, Volume and High fre-
quency boost [4], and similar approaches.

2. The set of HA parameters for which prescriptive guidelines are still evolving.
Examples include:

• Release times associated with compression parameters [5].

• Frequency lowering approaches and joint optimization of high frequency
amplification [6].

• Tuning of emerging signal processing approaches for noise management in
multiple listening environments.

For both classes of HA parameters, we propose a simple, intuitive graphical user
interface (GUI) to enable Human-in-the-loop (HITL) research, supported by ex-
tensible logic for the machine to propose alternative HA settings in contrast with
the current settings.

III Methodology

III.a Getting User Feedback

Fig 2: Example GUIs for user input. (Left) Quality Assessment. (Right) Just Notice-
able Differences(JNDs).

III.b Machine Proposed Alternative HA parameters

1. For the HA parameters we have prior knowledge on user expectations, it is possible to
organize the search space using simple search techniques. See Fig 3 (left) for an example
of binary search for volume.

2. The above figure can be extended for multi-dimensional search such as low frequency
slope, volume and high frequency shape [4].

3. We also utilized well known vector quantization (VQ) based clustering approaches to
organize multi-dimensional compression parameters in a binary tree based search space
structure.

4. For the emerging HA parameters with limited intuition on user preferences, we propose
to use probabilistic approaches such as multi-arm bandit solutions from reinforcement
learning approaches of machine learning.

Fig 3: Search strategies for machine proposed HA parameters. (Left) Binary search for
volume in O

(
2 × lg(N)

)
steps. Loud stimulus is lowered when user selects soft and

soft stimulus is increased when user selects loud. (Right) Example of multi-arm
bandit based approach in reinforcement learning. The machine conducts many trials
under the hood to maximize a reward function and presents an alternative set of HA
parameters. User provides reward based on perceived quality.

IV Results

VQ hierarchical clustering BST Tree
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Fig 4: VQ codebooks based hierarchical clustering for binary tree search (BST) algorithm
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(i). Audiogram of Cluster 18
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(ii). Audiogram of Cluster 23
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(iii). Audiogram of Cluster 26
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(iv). Audiogram of Cluster 31

Vector Quantization based Codebook clustering
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Fig 5: (Blue) Sample Hearing loss of different clusters (i). Severe sloping loss (ii). Moderate
cookie-bite loss (iii). Mild flat loss (iv). Normal hearing; (Red) The RMSE values
decrease with levels, with resolution of G65 gains becoming ∼0-1dB for two nearest
clusters at higher levels

V Conclusions

In this contribution, we presented pairwise comparison tools for searching a
given HA parameters space. We presented preliminary clustering results for the
NHANES data-set. Subjective experiments are required to assess the the user
effort and the achieved fitting accuracy.
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