LINKING SIGNAL-TO-NOISE RATIO TO HEARING AID SUCCESS

Gina Hone¹, B.S., Christi Miller¹, Ph.D., Michael Lee¹, PhD., Yu-Hsiang Wu², M.D., Ph.D., Ruth Bentler², Ph.D., Kelly Tremblay¹, Ph.D. ¹Department of Speech and Hearing Sciences, University of Washington, Seattle ²Department of Communication Sciences and Disorders, University of Iowa, Iowa City

INTRODUCTION

METHODS

Purpose of Study:

- · To identify new variables contributing to hearing aid success and to develop more sensitive clinical tools & protocols to maximize outcomes for HA users.
- Listeners with hearing loss need a more favorable signal-to-noise ratio (SNR) to perform at the same level as normal hearing listeners; yet HA processing often reduces the SNR from the input to the output.¹ Further, studies have shown that neural codes responsible for conveying speech information are sensitive to changes in SNR.^{2,3}
- The device-centered SNR is the SNR at the HA output (e.g., extracted SNR via phaseinversion) . An individual's intrinsic SNR is a trait unique to, and required by, that individual to perform a particular listening task (e.g. acceptable noise level; SNR required to understand 50% of speech; performance-perceptual discrepancy).

Hypothesis: A person will report greater HA success if their HA produces a more favorable output SNR (e.g., +5), and if the listener has a low intrinsic SNR (e.g., 0).

PARTICIPANTS

Age (years)

SD

Bingural PTA

(dB HL)

Mean

SD

MoCA

(Total Score)

Mean

11.81 26.82

SD

2.18

- 175 adult subjects recruited at UW and UI
- · Bilateral, symmetrical, mild to moderately-severe sensorineural hearing loss
- Montreal Cognitive Assessment screening indicating adequate cognitive function
- for testing (> 21/30)Fluent speakers of
- American English
- Bilateral HA user (min of 8 hours/week)

77 M 67.06 10.76 40.53 Table 1. Demographics of participants.

Mean

Gender

98 F

re		Known Predictors	Experimental Predictors	Outcomes
to es es se- tat NR vre	Patient- Centered Variables	 Age (self-reported; years) Personality (NEO Five-Factor Inventory-3)⁴: Neuroticism, Extraversion, Openness to Experience, Agreeableness, Conscientiousness Gender (self-reported; categorical) Self-Efficacy (Listening Self Efficacy Questionnaire; LSEQ)⁵ Auditory Lifestyle and Demand Questionnaire (ALDQ)⁶ Working Memory (WM; Word Auditory and Recognition Recall Measure)⁷ Puretone average, binaural (dB HL; PTA) 	 Acceptable Noise Level (ANL)⁸ SNR for 50% correct (Hearing in Noise Test, SNR 50)⁹ SNR for 80% correct (Hearing in Noise Test, SNR80) Performance-Perceptual Discrepancy (PPDIS)¹⁰ 	 Hearing Aid Daily Use (self-reported; hours) Multimodal Lexical Sentence Test (MLST)¹¹: Speech at 65dB SPL with visual cues and speechshaped noise at +8 dB SNR Abbreviated Profile of Hearing Aid Benefit (APHAB)¹²: Global Aided Score Hearing Handicap Inventory for the Elderly/Adults (HHE/A)¹³ Speech, Spatial, and Qualities of Hearing, v12 (SSQ)¹⁴ Satisfaction with Amplification in Daily Life (SADL)¹⁵ Statistical Analysis: A series of stepwise, multiple linear
on	Device- Centered Variables	 Audibility (Speech Intelligibility Index; SII; 65 dB speech input using real-ear measures) Directionality (dB separation between mics across frequencies; 70 dB SPL/0 dB SNR input) Noise Reduction (dB reduction in gain across frequencies; 70 dB SPL vacuum noise) 	 SNR at the HA output (dB SNR; Hagerman's phase- inversion technique for sentences in 4-talker babble; speech at 65 dB SPL and noise from 4-speakers at SNRs from -10 to +15 dB)* 	regression models were used to evaluate the significance of predictors on each outcome. In the <u>first model</u> , experimental variables were entered and evaluated for significance. In the <u>second model</u> , a hierarchical procedure was used with known predictors entered into the first bbck of the model, followed by the experimental predictors.

Table 2. Variables considered in this study. Predictors are categorized into either known or experimental, and patient-or device-centered *Excluded from analysis due to low validity of results.

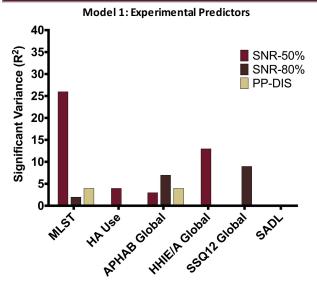


Figure 1. Significant variance explained by experimental predictors across outcomes at p=.05 Overall ANOVAs for each outcome: Speech-in-Noise [F (3,156) =24.243;p<0.0001;total R² = .32] HA Use [F(1,133) =5.955; p=.016; total R² = .04] APHAB Global [F (2,159) =12.821; p<0.0001; total R² =.14] HHIE/A Global [F(1,161) =23.322;p<0.0001;total R² =.13] SSQ12 Global [F(1,162) = 15.258; p<0001; total R² = .09] SADL Global [ns]

RESULTS

Model 2: Known and Experimental Predictors

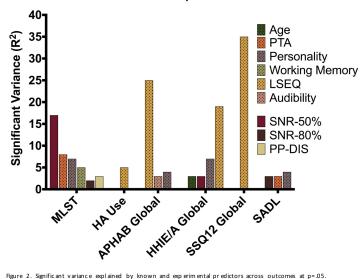


Figure 2. Significant variance explained by known and experimental predictors across outcomes at p=.05 Overall ANOVAs for each outcome

Speech-in-Noise [F (7,134) =13.293;p<0.0001;total R² = .41] HA Use [F(1,117) = 6.345; p=.013; total R² = .05] APHAB Global [F (3,138) =21.057; p<0.0001; total R² =.31] HHIE/A Global [F(4,385) = 15.622; p<0.0001; total R² = .31] SSQ12 Global [F(1,141) = 76.002; p<0001; total R² = .35] SADL Global [F (3,139) = 4.711; p=.004; total R² =.09]

CONCLUSIONS

- Output SNR, as measured in this study, did not yield valid results for a majority of subjects. Explanations for this result are being explored.
- Intrinsic SNR (SNR-50, SNR-80, PPDIS) was informative to outcomes; however, once we controlled for known predictors, the contribution was minimized
- The most consistent predictor across self-reported HA outcomes was listening self-efficacy. Although previous work suggests that self-reported outcomes (e.g., APHAB, HHIE) measure different underlying constructs than listening self-efficacy¹¹, they were highly correlated in this study. It is possible that rehabilitation focus on improving listening self-efficacy (e.g. role playing therapy) could improve other domains of success.

ACKNOWLEDGEMENTS

Work funded by NIH grants R01 DC012769-04 awarded to RB and KT, P30 DC004661, and U54TR001356.

¹Miller, C. W., Bentler, R. A., Wu, Y. H., Lewis, J., & Tremblay, K. (2017). International journal of

audiology, 56(8), 56857. ²Tremblay, K., & Ross, B. (2007). Journal of Communication Disorders, 40(4), 305312. ³Tremblay, K. L., Kalstein, L., Billings, C. J., & Souza, P. E. (2006). Trends in Amplification, 10(3). 155-162

4Costa, P. T., & McCrae, R. R. (1992). Odessa, FL: Psychological Assessment Resources ⁵Smith, S., Kathleen Pichora-Fuller, M., Watts, K., & La More, C. (2011). International Journal of

Audiology, 50(6), 417-425. ⁶Kirk K1, Prusick L, French B, Gotch C, Eisenberg LS, Young N. (2012). J Am Acad Audiol, 23(6) 464-75.

7Smith, S. L., Pichara-Fuller, M. K., & Alexander, G. (2016). Ear and hearing, 37(6), e360-e376 ⁸Nabelek, A., Freyaldenhove n, M., Tampas, J., Burchfiel, S., & Muenchen, R. (2006). Journal of the American Academy of Audiology, 17(9), 626-39.

⁹Nilsson, M., Soli, S., & Sullivan, J. (1994). The Journal of the Acoustical Society of America, 1085.99

10 Saunders, G., & Forsline, A. (2006). Ear and Hearing, 27(3), 229-42.

¹¹Getehouse, S. (1999). In A.N. Rozmussen, P.A. Ostehommel, T. Andersen & T. Poulsen (eds.) Auditory Models and Non-Linear Hearing Instruments. Demack: Holmens Trykkeri, pp. 221 12°Cax, R. & Alexander, G. (1995). Ear and Hearing 16(2), 178-86. Holmens Trykkeri, pp. 221 233.

¹³Ventry IM, Weinstein BE. Ear Hear. 1982;3(3):12.8-13.4.
¹⁴Gatehouse, S., & Noble, W. (2004). International Journal

use, S., & Noble, W. (2004). International Journal 15 Cox, R. M., & Alexander, G. C. (1999). Ear and Hearing, 20, 306-320. 43(2), 85-99

Presented at the American Auditory Society Meeting, March 2018, For more information : christim@uw.edu